Classification from One Class of Examples for Relational Domains
نویسندگان
چکیده
One-class classification approaches have been proposed in the literature to learn classifiers from examples of only one class. But these approaches are not directly applicable to relational domains due to their reliance on a feature vector or a distance measure. We propose a nonparametric relational one-class classification approach based on first-order trees. We learn a tree-based distance measure that iteratively introduces new relational features to differentiate relational examples. We update the distance measure so as to maximize the one-class classification performance of our model. We also relate our model definition to existing work on probabilistic combination functions and density estimation. We experimentally show that our approach can discover relevant features and outperform three baseline approaches.
منابع مشابه
Relational One-Class Classification: A Non-Parametric Approach
One-class classification approaches have been proposed in the literature to learn classifiers from examples of only one class. But these approaches are not directly applicable to relational domains due to their reliance on a feature vector or a distance measure. We propose a nonparametric relational one-class classification approach based on first-order trees. We learn a tree-based distance mea...
متن کاملFuzzy Relational Matrix-Based Stability Analysis for First-Order Fuzzy Relational Dynamic Systems
In this paper, two sets of sufficient conditions are obtained to ensure the existence and stability of a unique equilibrium point of unforced first-order fuzzy relational dynamical systems by using two different approaches which are both based on the fuzzy relational matrix of the model.In the first approach, the equilibrium point of the system is one of the centers of the related membership fu...
متن کاملMULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM
Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...
متن کاملAstronomical Data Processing Using SciQL, an SQL Based Query Language for Array Data
SciQL (pronounced as ‘cycle’) is a novel SQL-based array query language for scientific applications with both tables and arrays as first class citizens. SciQL lowers the entrance fee of adopting relational DBMS (RDBMS) in scientific domains, because it includes functionality often only found in mathematics software packages. In this paper, we demonstrate the usefulness of SciQL for astronomical...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کامل